Terdapat hubungan yang jelas antara bilangan oksidasi (atau tingkat oksidasi) atom dan posisinya dalam tabel periodik. Bilangan oksidasi atom dalam senyawa kovalen didefinisikan sebagai muatan imajiner atom yang akan dimiliki bila elektron yang digunakan bersama dibagi sama rata antara atom yang berikatan (kalau atom yang berikatan sama) atau diserahkan semua ke atom yang lebih kuat daya tariknya (kalau yang berikatan atom yang berbeda).
(1) UNSUR GOLONGAN UTAMA

Untuk unsur golongan utama, bilangan oksidasi dalam banyak kasus adalah jumlah elektron yang akan dilepas atau diterima untuk mencapai konfigurasi elektron penuh, ns2np6 (kecuali untuk periode pertama) atau konfigurasi elektron nd10 (gambar 5.2).

Hal ini jelas untuk unsur-unsur periode yang rendah yang merupakan anggota golongan 1, 2 dan 13-18. Untuk periode yang lebih besar, kecenderungannya memiliki bilangan oksidasi yang berhubungan dengan konfigurasi elektron dengan elektron ns dipertahankan dan elektron np akan dilepas. Misalnya, timah Sn dan timbal Pb, keduanya golongan 14, memiliki bilangan oksidasi +2 dengan melepas elektron np2 tetapi mempertahankan elektron ns2, selain bilangan oksidasi +4. Alasan yang sama dapat digunakan untuk adanya fakta bahwa fosfor P dan bismut Bi, keduanya golongan 15 dengan konfigurasi elektron ns2np3, memilki bilangan oksidasi +3 dan +5.

Umumnya, pentingnya bilangan oksidasi dengan elektron ns2 dipertahankan akan menjadi semakin penting untuk periode yang lebih besar. Untuk senyawa nitrogen dan fosfor, bilangan oksidasi +5 dominan, sementara untuk bismut yang dominan adalah +3 dan bilangan oksidasi +5 agak jarang.

Unsur logam dan semilogam (silikon Si atau germanium Ge) jarang memiliki nilai bilangan oksidasi negatif, tetapi bagi non logam fenomena ini umum dijumpai. Dalam hidrida nitrogen dan fosfor, NH3 dan PH3, bilangan oksidasi N dan P adalah–3. Semakin tinggi periode unsur, unsur akan kehilangan sifat ini dan bismut Bi tidak memiliki bilangan oksidasi negatif. Di antara unsur golongan 16, bilangan oksidasi-2 dominan seperti dalam kasus oksigen O. Kecenderungan ini lagi-lagi akan menurun untuk unsur-unsur di periode lebih tinggi. Misalkan oksigen hanya memiliki bilangan oksidasi negatif, tetapi S memiliki bilangan oksidasi positif seperti +4 dan +6 yang juga signifikan.

(2) UNSUR TRANSISI

Walaupun unsur transisi memiliki beberapa bilangan oksidasi, keteraturan dapat dikenali. Bilangan oksidasi tertinggi atom yang memiliki lima elektron yakni jumlah orbital d berkaitan dengan keadaan saat semua elektron d (selain elektron s) dikeluarkan. Jadi, dalam kasus skandium dengan konfigurasi elektron (n-1)d1ns2, bilangan oksidasinya 3. Mangan dengan konfigurasi (n- 1)d5ns2, akan berbilangan oksidasi maksimum +7.

Bila jumlah elektron d melebihi 5, situasinya berubah. Untuk besi Fe dengan konfigurasi elektron (n-1)d6ns2, bilangan oksidasi utamanya adalah +2 dan +3. Sangat jarang ditemui bilangan oksidasi +6. Bilangan oksidasi tertinggi sejumlah logam transisi penting seperti kobal Co, Nikel Ni, tembaga Cu dan zink Zn lebih rendah dari bilangan oksidasi atom yang kehilangan semua elektron (n–1)d dan ns-nya. Di antara unsur-unsur yang ada dalam golongan yang sama, semakin tinggi bilangan oksidasi semakin penting untuk unsur-unsur pada periode yang lebih besar.